

FID Biodiversitätsforschung

Der Palmengarten

Wasserpflanzen aus dem Stromgebiet des Rio Negro

Korthaus, Edith 1986

Digitalisiert durch die *Universitätsbibliothek Johann Christian Senckenberg, Frankfurt am Main* im Rahmen des DFG-geförderten Projekts *FID Biodiversitätsforschung (BIOfid)*

Weitere Informationen

Nähere Informationen zu diesem Werk finden Sie im: Suchportal der Universitätsbibliothek Johann Christian Senckenberg, Frankfurt am Main.

Bitte benutzen Sie beim Zitieren des vorliegenden Digitalisats den folgenden persistenten Identifikator:

urn:nbn:de:hebis:30:4-269945

EDITH KORTHAUS

Wasserpflanzen aus dem Stromgebiet des Rio Negro

Die Schwarzwässer im Gebiet des Rio Negro sind dafür bekannt, daß es in ihnen keine oder kaum Pflanzen gibt. Schwarzwasserflüsse sind »Hungerflüsse«, heißt es in Brasilien; denn in ihnen fehlt oft schon eines der ersten Glieder der Nahrungskette, das Phytoplankton. So erwartete ich auch nichts in dieser Richtung, als ich mich auf den Weg machte in die Urwälder Amazoniens. Mein Anliegen waren die Fische. Die erste Überraschung erlebte ich im Rio Guiuni, einem rechten Nebenfluß des Rio Negro. Ein kleiner Seitenbach weckte mein Interesse. Das Wasser war dunkel gefärbt, typisches Schwarzwasser. Doch je weiter man den Bach hinauffährt, um so klarer wird das Wasser, Bald war von Schwarzwasser keine Rede mehr. Und dann kam die Überraschung. Pflanzen über Pflanzen

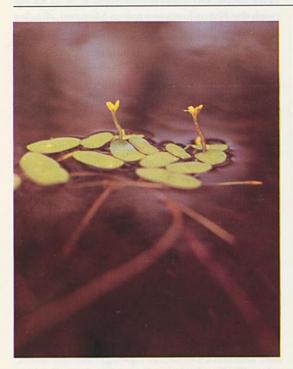
In einer größeren Ausbuchtung, die aber nur bei Hochwasser völlig überschwemmt wird und in der das Wasser nur mäßig bewegt war, tauchten die Schwimmblätter einer Nymphaea auf. Gleich daneben gab es massenhaft kleine, unscheinbare Blüten an langen Stielen. Allem Anschein nach handelte es sich um Utricularia. Beim Näherkommen waren dann auch noch zahlreiche gelbe Blüten zu entdecken, mit zwei Kron- und zwei Kelchblättern. Auf den ersten Blick sah es aus, als besitze die Blüte vier Kronblätter. Die Blüten wurden von schildförmigen Schwimmblättern über Wasser gehalten. Auf der Oberseite zeigten die Schwimmblätter eine saftig grüne Farbe, die Unterseite leuchtete purpurrot. Die submersen, braunroten Blätter zeigten deutlich an, daß es sich um eine Cabomba handelte, auch die Schwimmblätter und Blüten wiesen darauf hin. Inzwischen konnte ich ermitteln, daß es Cabomba schwartzii ist. Die Art wurde von RATAJ beschrieben und ist noch nicht lange bekannt. Nach RATAJ soll die Pflanze aber im Schwarzwasser leben und dort meist allein wachsen. Nun, es mag ja Fundorte geben, an denen das zutrifft, an meinem jedenfalls nicht, wie auch das Farbbild dokumentiert. Hier wuchs die Cabomba nämlich inmitten weiterer Pflanzen. Von der schon erwähnten Utricularia abgesehen, gab es da noch die Nymphaea in großen Mengen, die der Cabomba Konkurrenz machte. Außerdem wuchs dort, ebenfalls in großen Mengen, Mayaca. Aus der Familie Mayacaceae (Mooskrautgewächse) ist aquaristisch wohl nur Mayaca fluviatilis bekannt, das Flutende Mooskraut. Die Art, wie die Pflanze ihre Triebspitzen ausbildet, stimmt aber nicht mit der des Flutenden Mooskrautes überein. Eine Nach- oder Neubestimmung steht noch aus. Damit haben wir schon vier Wasserpflanzen, alle am gleichen Standort.

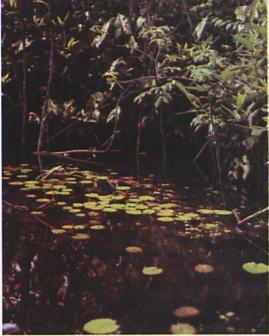
Schwarzwasser

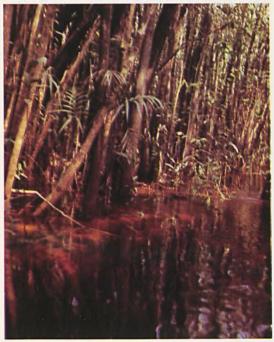
Wenngleich das Wasser klar war, so stimmte es doch in den von mir ermittelbaren Werten mit dem sogenannten Schwarzwasser überein, mit einer Ausnahme, es war ein Eisengehalt von 0,1 mg/l feststellbar. Beide Gewässertypen sind arm an Elektrolyten, extrem sauer und ohne nachweisbare Härte. Der Gewässertyp hängt von der Beschaffenheit des Bodens ab. Schwarzwasser entspringt im amazonischen Tiefland mit sandigem, kiesigem Boden. Der Sandhorizont wird in der Sprache des Geologen als Podsol bezeichnet. Der Sand wird vom Regenwasser ausgespült, darin enthaltene Substanzen wandern tiefer und gelangen ins Grundwasser. Vermutlich gilt das auch für Aluminium und Eisen, während die Kieselsäure stationär bleibt. Dafür spricht, daß im Schwarzwasser oft Aluminium nachzuweisen ist. Es wirkt bekanntlich giftig auf Pflanzen. Hier könnte einer der Gründe für fehlendes Pflanzenwachstum im Schwarzwasser liegen. Die auf Podsolböden lebende Pflanzengemeinschaft ist den Verhältnissen in besonderer Weise angepaßt. Der Wald existiert praktisch aus sich selbst. Die benötigten Nährstoffe werden aus dem das ganze Jahr über reichlichen Laubfall wieder aufgenommen. Die im Boden anfallenden organischen Substanzen werden nicht oxydativ abgebaut, es entstehen also nicht Nitrat und Kohlensäure, vielmehr volloben links:

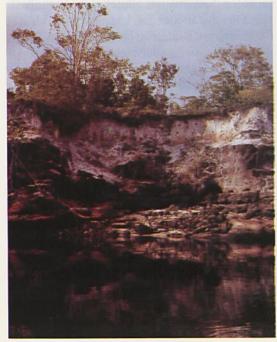
Cabomba schwartzii. Die submersen Blätter sind feinfiedrig und braunrot gefärbt.

unten links:


Überschwemmungswald (Igapo) mit reinem Schwarzwasser.


oben rechts:


Blühende Cabomba schwartzii und Nymphaea spec. im Schwarzwasser führenden Rio Guiuni.


unten rechts:

Podsol-Profil der sogenannten Campina am Rio Araca.

zieht sich der Abbau reduktiv. Dabei entsteht Rohhumus, der gelöst ins Grundwasser gelangt und dort bereits die Schwarzfärbung des Ouellwassers bewirkt.

Auf dem Bild sieht man die Horizonte. Unter der ganz dünnen, oberen Humusschicht kommt ein breiter Sandhorizont. Der Regen durchspült ihn immer wieder, er ist fast steril. Rohhumus wandert dabei tiefer und es entsteht der sogenannte Ortstein-Horizont, in dem sich die humosen Substanzen der Oberfläche anreichern, und zwar um so mehr, je tiefer man kommt. Der Fluß wäscht diese Substanzen auch wieder aus. Als Folge der starken Durchschlämmung sind diese Böden extrem arm an Nährstoffen (reduktive Vorgänge). Man stelle sich nur einmal vor was passiert, wenn eines Tages der Wald abgeholzt wird in der Annahme, man könnte auf dem Boden Ackerbau und Viehzucht betreiben. Eine riesige Sandwüste würde entstehen, auf der sich vermutlich nicht einmal ein Sekundärbewuchs einstellte.

Klarwasser

Kommen wir zum Klarwasser, in dem die Pflanzen wuchsen. Solche Wässer kommen aus Hochwaldgebieten, in Brasilien als Terra Firme bezeichnet. Der Boden ist hier mehr tonig und gelbbraun gefärbt. Es wird kein Rohhumus gebildet, weil diese Böden besser durchlüftet sind. In ihnen oxydiert der Stickstoff zu Nitrat, während in den Böden, aus denen Schwarzwasser hervorkommt, der Stickstoff zu Ammoniak reduziert wird.

Schwebstoffe gelangen kaum in das klare Wasser, und das dichte Laubdach des Waldes verhindert auch eine Bodenerosion. Das Regenwasser dringt in den Boden ein, es läuft nicht oberflächlich ab, so daß praktisch keine nährstoffreichen Substanzen von der Bodenoberfläche ins Wasser gespült werden. Auf seinem Weg durch den Boden nimmt das Regenwasser aber die dort löslichen Stoffe mit und spült sie in die Flüsse.

Im Einzug aller Pflanzenbäche, die ich fand, insgesamt vier, muß es irgendwo eisenhaltigen Boden geben; denn es konnte ja ein Eisengehalt von 0,1 mg/l ermittelt werden. Er spielt offenbar eine Rolle im Zusammenhang mit

dem reichen Pflanzenwachstum. Wo Eisen nachweisbar, konnte man mit aller Sicherheit Pflanzen erwarten. In diesem Zusammenhang dürfte Eisen aber nur als Indikator zu werten sein; denn wo Eisen in Lösung geht, gehen auch andere Stoffe in Lösung. Eisen allein würde das Pflanzenwachstum wohl kaum bewirken.

In der Trockenzeit, wenn das Wasser fällt, gehen viele der Wasserpflanzen zugrunde. Es ist aber ein deutlicher Wachstumstrend in Richtung Bachbett zu bemerken, so daß mit Sicherheit ein Teil der Pflanzen auch trockene Zeiten überdauert.

Erfahrungen im Aquarium

Die mitgebrachten Pflanzen erwiesen sich nicht alle als reine Freude im Aquarium. Sehr gut wächst die Mayaca, die Cabomba dagegen erscheint weniger geeignet. Die neu treibenden Blätter sind nicht mehr braunrot, sondern eher rosa. Nach einiger Zeit wirft die Pflanze im unteren Bereich immer mehr Blätter ab und nach einigen Monaten geht sie ein. Die Nymphaea blieb im Aquarium zwar kleiner, erwies sich aber als ausdauernd. Eine interessante und bisher nicht zu determinierende Pflanze mit rotem Stengel und nadelförmigen Blättern war vom Transport schon zu stark mitgenommen, sie erholte sich nicht mehr. Auch ein grasartiges Gewächs mit roten Wurzeln (Echinodorus?) brachte ich mit und pflegte es eine Weile im Aquarium. Aber nach und nach ging das Wachstum zurück. Die komplizierten Vorgänge in der freien Natur, auf die hier versuchsweise eingegangen wurde, lassen sich eben in dem kleinen Lebensraum Aquarium nicht immer ausreichend nachvollziehen. Zum Glück gibt es aber genug Gewächse, die da weniger heikel sind und uns den Gefallen tun, im Aquarium zu wachsen. Die Mayaca scheint eines von ihnen zu sein.

Literatur:

Grabert, Helmut, Wirtschaftsraum Amazonien – natürliche Grundlagen, Probleme, Aussichten. Natur und Museum, 6/73, Frankfurt/M.

Sioli, Harald, Amazonien – Grundlagen der Ökologie des größten tropischen Waldlandes. Wissenschaftliche Verlags-GmbH, Stuttgart.

Sioli, Harald, Gewässerchemie und Vorgänge in den Böden im Amazonasgebiet. Die Naturwissenschaften, Springer-Verlag, Berlin.

Sioli, Harald, Die Limnologie des Brasilianischen Amazonasgebietes. Staden-Jahrbuch, Sao Paulo, Bd. 29.